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a b s t r a c t

In this work we present a novel vision-based system for automatic detection and extraction of complex
road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR.
Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping
theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using
graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection
and classification.
Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting

to produce accurate classification of the geospatial features. In addition, the tensorial representation
used for the encoding of the data eliminates the need for any thresholds, therefore removing any data
dependencies.
Secondly, a novel orientation-based segmentation is presented which incorporates the classification

of the perceptual grouping, and results in segmentations with better defined boundaries and continuous
linear segments.
Finally, a set of gaussian-based filters are applied to automatically extract centerline information

(magnitude, width and orientation). This information is then used for creating road segments and
transforming them to their polygonal representations.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

Recent technological advancements have caused a significant
increase in the amount of remote sensor data and of their uses in
various applications. Efficient and inexpensive techniques in the
area of data acquisition have popularized the use of remote sen-
sor data and led to their widespread availability. However, the in-
terpretation and analysis of such data still remains a difficult and
manual task. Specifically in the area of road mapping, traditional
methods require time-consuming and tediousmanual workwhich
does not meet the increasing demands and requirements of cur-
rent applications. Although considerable attention has been given
on the development of automatic road extraction techniques it still
remains a challenging problem due to the wide variations of roads
(urban, rural, etc) and the complexities of their environments (oc-
clusions due to cars, trees, buildings, etc).
In this work we focus on the automatic and reliable detec-

tion and extraction of transportation networks from remote sen-
sor data including aerial photographs, satellite images, and LiDAR.
We present an integrated solution that merges the strengths of
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perceptual grouping theory (Gabor filters, tensor voting) and seg-
mentation (global optimization by graph-cuts), under a unified
framework to address the challenging problem of automated fea-
ture detection, classification and extraction. The proposed ap-
proach leverages the multi-scale, multi-orientation capabilities of
Gabor filters for the inference of geospatial features, the effective
and robust handling of noisy, incomplete data of tensor voting for
the feature classification and the fast and efficient optimization of
graph-cuts for the segmentation and labeling of road features.

2. Related work

A plethora of work has been proposed for solving the com-
plex problemof extracting road networks from remote sensor data.
Almost all of the existing work shares similar processing pipeline
and relies on the combination of pixel-based, region-based and
knowledge-based techniques. However, several distinctions ex-
ist between the different processing components. Below is an
overview of the state-of-the-art in this area. Mayer et al. (2006)
offers a comprehensive survey on the state-of-the-art road extrac-
tion techniques from a variety of different datasets.
In Baumgartner et al. (1999) lines are extracted in an imagewith

reduced resolution as well as road-side edges in the original high
resolution image. Using both resolution levels and explicit knowl-
edge about roads, hypotheses for road segments are generated and
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are grouped iteratively into larger segments. Although the results
seem promising, the proposed method is focused on extracting
road networks for rural areas.
Lisini et al. (2004) presents a system which relies on adaptive

filtering to determine predominant orientations of the roads. The
response of the filtering is then used to extract linear segments
which are then connected based on tolerances determined by the
spatial resolutions. This approach relies on various hard thresholds
and data-dependent parameters thus requires considerable user
interaction to tune the parameters prior to processing the data.
A different approach which tries to reduce the number of

tunable parameters is presented in Laptev et al. (2000). The authors
propose the integration of the well-established techniques of
multi-scale image processing and active contour models to resolve
the complex problem of road extraction. They use a multi-scale
ridge detector for the detection of lines at a coarser scale, and then
use a local edge detector at a finer scale for the extraction of parallel
edges which are optimized using a variation of the active contour
models technique (snakes). The results indicate that the approach
performs very well especially for rural areas.
Similarly,Wessel (2004) employs Steger’s differential geometry

approach (Mayer and Steger, 1998) for the extraction of linear
segments. Context information about road networks is then used
to connect the linear segments into roads. Steger’s differential
geometry approach is also employed in Bacher and Mayer (2005)
for the extraction of linear segments from multi-spectral images.
The extracted lines are then used for training through an automatic
supervised classification to produce a road class image which can
be used to verify road hypotheses. The approach has been shown
to perform well on rural areas only.
The authors in Barsi and Heipke (2003) present an approach for

extracting road junctions. To achieve this they train a feed-forward
artificial neural network to learn a junction model which supports
junctions of up to four arms. The training is performed interactively
and the junctions are extracted using a Deriche operator for the
edge detection with an added hysteresis threshold, followed by an
edge smoothing using the Ramer algorithm. Although the result is
not a complete road network the approach seems to perform very
well for rural areas.
The system in Zhang et al. (2001) integrates knowledge process-

ing of color image data and information from digital geographic
databases, extracts and fuses multiple object cues, thus takes into
account context information, employs existing knowledge, rules
and models, and treats each road subclass accordingly. Clode et al.
(2005) uses a rule-based algorithm for the detection of buildings at
a first stage and then at a second stage the reflectance properties of
the road. Similarly, Zhang and Couloigner (2006) uses reflectance
as a measure for the image segmentation and clustering. Explicit
knowledge about geometric and radiometric properties of roads
is used in Wessel (2004) to construct road segments from the hy-
potheses of road-sides. In Barsi and Heipke (2003) the developed
system can detect a variety of road junctions using a feed-forward
neural network, which requires collected data for the training of
the network. Peteri et al. (2003) take high resolution images as in-
put along with prior knowledge about the roads e.g. road models
and road properties.
In Porikli (2003) the authors present an approach based on

point-wise Gaussian models. A set of quadruple line filters is ap-
plied on the image to extract linear segments. Additionally, road
points which are not perceptible by the line filters are enhanced
using the likelihood of each image point as being part of a road.
The results are impressive however, this approach only deals with
images where the roads appear as thin linear features and have no
width.
A method which relies on elevation data is presented in Clode

et al. (2005). LiDAR data provides accurate elevation information
which can be used to resolve problems occurring using optical
imagery such as road overlaps due to bridges. A region growing
algorithm is used to segment the road segments from other points
in the data such as buildings, trees, etc. The road candidates
are then vectorized using a phase-coded disk which allows the
extraction of roads of different widths and different orientations.
The importance of scale-space processing is described in the

work of Mayer and Steger (1998). Building on similar concepts,
the authors in Heller and Pakzad (2005) present a concept to auto-
matically adapt road models for high resolution images to models
appropriate for images of lower resolution with similar spec-
tral characteristics. Additionally, in Heuwold (2006) the author
presents a framework for the verification of the automatic adapta-
tion of object models consisting of parallel line-type objects parts
to a lower image resolution. Similarly, in Hinz and Baumgartner
(2003) the authors present an automatic road extraction technique
by integrating detailed knowledge about roads and their context
using explicitly formulated scale-dependentmodels. A slightly dif-
ferent approach which combines a scale-space processing frame-
work with the introduction of Markov random fields is presented
in Tupin et al. (2002).
On a different note, the authors in Mena and Malpica (2005)

present an automaticmethod for road extractionwhich uses a new
technique, named Texture Progressive Analysis and consists of a
fusion of information streaming from three different sources for
the image. The approach was successfully applied on rural as well
as semi-urban areas with successful results.
Zhou et al. (2007) present a user-guided image interpretation

system which integrates inputs from human experts with compu-
tational algorithms in order to learn road tracking. Although the re-
sults seem promising, the goal of completely eliminating the need
for human intervention and interactions is still not achieved.
An approach which combines a line-based road extraction and

area-based color segmentation techniques is presented in Ziems
et al. (2007). They show that the incorporation of prior information
into the line-based road extraction algorithm allows the robust
estimation and automatic tune-up of parameters that control the
contrast between road and background, the homogeneity within
the road objects and the global threshold formasking out non-road
areas.
The aforementioned work clearly indicates that the predom-

inant approach for addressing the complex problem of road ex-
traction involves the multi-scale processing of the input data. In
addition to the scale-space processing, an imperative part of road
extraction systems is the elimination of data-dependent parame-
ters since this directly affects the applicability of the system. Al-
though very impressive and promising results have already been
reported as mentioned above, the majority of the existing work in
the area focuses on particular types of datasets (i.e. LiDAR or satel-
lite images) and/or particular types of scenes (i.e. rural, urban, for-
est, etc). The result is road extraction systems which perform well
for one type but fail for another unless numerous parameters are
fine-tuned.
Hence, the goal of our work is to design and develop a system

which relies on well-established computer vision techniques,
incorporates scale-space processing, requires no (or minimal and
stable) parameter tuning and can simultaneously process various
remote sensor data such as LiDAR, intensity response and sate-
llite imagery. The solution to these problems is sought in the
development of a novel system which combines the strengths
of perceptual grouping (Gabor filters, Tensor Voting) and global
optimization (Graph-Cuts) for the geospatial feature inference
and classification. As a result, the proposed system has no data
dependencies and requiresminimal parameters whichwere found
to be stable and remain fixed for all the examples presented (scale
factor for the Tensor voting, number of labels and smoothness
factor for the optimization). The results shown in Section 7 indicate
the high success rate of our system on all types of datasets and
scenes, and verify the validity of the approach.
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Fig. 1. System overview.

3. System overview

Although many different approaches have been proposed and
developed for the automatic extraction of road networks, it still
remains a challenging problem due to the wide variations of roads
e.g. urban, rural, mountainous etc and the complexities of their
environments e.g. occlusions due to cars, trees, buildings, shadows
etc. For this reason, traditional techniques such as pixel- and
region-based have several problems and often fail when dealing
with complex road networks. Our proposed approach addresses
these problems and provides solutions to the difficult problem of
automatic road extraction. Fig. 1 summarizes our approach.
Firstly, geospatial feature inference and classification. Local ori-

entation information is extracted using a bank of Gabor filters,
which is encoded into a tensorial representation. This represen-
tation can simultaneously capture the geometric information of
multiple feature types passing through a point (surface, curve,
junction) and an associated measure of the likelihood of that point
being part of each type. A tensor voting is then performed which
globally communicates and refines the information carried at each
point. An important advantage of combining Gabor filters and ten-
sor voting for the classification is that it eliminates the need for
hard thresholds. Instead, the refined likelihoods of each point give
an accurate estimate of the dominant feature passing through that
point, and are therefore used for the classification into curve and
junction features. Furthermore, it removes the limitation of tensor
voting towork only with binary images and extends its application
to grayscale images.
Secondly, road feature segmentation and labeling. A novel

orientation-based segmentation using graph-cuts is performed. An
important aspect of this segmentation is that it incorporates the
orientation information of the classified curve features and favors
towards keeping those curves connected. The result is a binary
segmentation into road and non-road candidates.
Finally, road network extraction and modeling. A pair of

gaussian-based bi-modal and single mode kernels are developed
for the automatic detection of road centerlines and the extraction
of width and orientation information from the segmented road
candidates. Linear segments resulting from the application of an
iterative Hough transform on the road centerlines, are validated
and refined (merge, split, approximate, smooth). Using the auto-
matically extracted width and orientation information, a tracking
algorithm converts the refined linear segments into their equiva-
lent polygonal representations.

4. Geospatial feature inference and classification

4.1. Gabor filtering

A2DGabor function g(x, y) in spatial frequency domain is given
by,

g(x, y) = c(x, y)× e(x, y) (1)

where c(x, y) is a complex sinusoidal, known as the carrier, and
e(x, y) is a 2D Gaussian function, known as the envelope.
The complex sinusoidal carrier is defined as,

c(x, y) = ej(2π(u0x+v0y)+φ) (2)

where (u0, v0) is the spatial frequency and φ is the phase of the
sinusoidal. The spatial frequency can also be expressed in polar
coordinates as magnitude F0 and direction ω0. The 2D Gaussian
envelope is defined as,

e(x, y) = Ae(−π(s
2
x (x−x0)

2
ϑ+s

2
y (y−y0)

2
ϑ )) (3)

where A is a scale of the magnitude, (sx, sy) are scale factors for the
axes, (x0, y0) is the peak coordinates and ϑ is the rotation angle.
An attractive characteristic of the Gabor filters is their ability to

tune at different orientations and frequencies. Thus by fine-tuning
the filters we can extract high-frequency oriented information
such as discontinuities and ignore the low-frequency clutter.
We employ a bank of Gabor filters tuned at 8 different orienta-

tions θ linearly varying from 0 ≤ θ < π , and at 5 different high
frequencies (per orientation) to account for multi-scale analysis.
The remaining parameters of the filters in Eq. (3) are computed as
functions of the orientation and frequency parameters as in Man-
junath and Ma (1996).
The application of the bank of Gabor filters results in a total of

40 response images (8 orientations ×5 frequencies) as shown in
the Table 1. The response images corresponding to filters of the
same orientation and different frequency are added together. The
result is a single response image per orientation (total of 8) which
is then encoded using a tensorial representation as explained
in Section 4.2.

4.2. Tensor voting

Tensor voting is a perceptual grouping and segmentation
framework introduced by Medioni et al. (2000). A key data rep-
resentation based on tensor calculus is used to encode the data. A
point x ∈ R3 is encoded as a second-order symmetric tensor T and
is defined as,

T =
[
Ee1 Ee2 Ee3

] [λ1 0 0
0 λ2 0
0 0 λ3

]Ee
T
1

EeT2
EeT3

 (4)

T = λ1Ee1EeT1 + λ2Ee2Ee
T
2 + λ3Ee3Ee

T
3 (5)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are eigenvalues, and Ee1, Ee2, Ee3
are the eigenvectors corresponding to λ1, λ2, λ3 respectively. By
applying the spectrum theorem, the tensor T in Eq. (5) can be ex-
pressed as a linear combination of three basis tensors (ball, plate
and stick) as in Eq. (6).
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Table 1
Gabor filters are applied at 8 different orientations and 5 different high frequencies. Output images of the same orientation (and varying frequency) are grouped together
resulting in a total of 8 images (one for each orientation) as shown in the last column. Similarly, the 8 images can then be grouped together resulting in a single image
depicting the detected edges.
a

b

Fig. 2. (a) Tensor decomposition into the stick, plate and ball basis tensors in 3D. (b) Votes cast by a stick tensor located at the origin O. C is the center of the osculating
circle passing through points P and O.
T = (λ1 − λ2)Ee1EeT1 + (λ2 − λ3)(Ee1Ee
T
1 + Ee2Ee

T
2)

+ λ3(Ee1EeT1 + Ee2Ee
T
2 + Ee3Ee

T
3). (6)

In Eq. (6), (Ee1EeT1) describes a stick (surface) with associated saliency
(λ1−λ2) and normal orientation Ee1, (Ee1EeT1+Ee2Ee

T
2) describes a plate

(curve) with associated saliency (λ2− λ3) and tangent orientation
Ee3, and (Ee1EeT1 + Ee2Ee

T
2 + Ee3Ee

T
3) describes a ball (junction) with as-

sociated saliency λ3 and no orientation preference. The geometric
interpretation of tensor decomposition is shown in Fig. 2(a).
An important advantage of using such a tensorial representa-
tion is its ability to capture the geometric information for multiple
feature types (junction, curve, surface) and a saliency, or likelihood,
associated with each feature type passing through a point.
Every point (x, y) in the Gabor filter response images computed

previously is encoded using Eq. (4) into a unit plate tensor (rep-
resenting a curve) with the orientation Ee3 aligned to each filter’s
Gi orientation and is scaled by the magnitude of the response of
that point (Gi⊗ I)x,y. The resulting eight tensors for each point are
then added togetherwhich produces a single tensor T(x,y) per point
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of votes it receives from point O: (1) a second-order vote which is a
second-order tensor that indicates the preferred orientation at the
receiver according to the voter and (2) a first-order vote which is a
first-order tensor (i.e. a vector) that points toward the voter along
the smooth path connecting the voter and receiver. The scale factor
σ is the only free variable in the framework.
After the tensor voting the refined information is analyzed and

used to classify the points as curve or junction features. An example
of a mountainous area with curvy roads is shown in Fig. 3(b). A
saliency map indicating the likelihood of each point as being part
of a curve (green) and a junction (blue) is shown in Fig. 3(c). The
saliencymap is used for the classification of the curve pointswhich
are shown in Fig. 3(d). A point with (λ2 − λ3) > λ3 is classified as
a curve point and a point with λ3 > (λ2 − λ3) is classified as a
junction point. Intuitively, a greener point is a curve and a bluer
point is a junction.
A key advantage of combining the Gabor filtering and tensor

voting is that it eliminates the need for any thresholds therefore
removing any data dependencies. The local precision of the Gabor
filters is used to derive information which is directly encoded
into tensors. The tensors are then used as an initial estimate for
global context refinement using tensor voting and the points are
classified based on the their likelihoods of being part of a feature
type. This unique characteristic makes the process invariant to
the type of images being processed. In addition, the global nature
of tensor voting makes it an ideal choice when dealing with
noisy, incomplete and complicated images and results in highly
accurate estimates about the image features. This is demonstrated
in Fig. 3(a) where the original image shows a polygon with many
gaps of different sizes in white and the recovered, classified
curve points are shown in yellow. As it can be seen most of the
discontinuities were successfully and accurately recovered.
Fig. 3. (a) Successful handling of discontinuities. Before (left) and after (right) the tensor voting process. (b) Original image of CopperMountain area in Colorado. (c) Saliency
map indicating the refined likelihoods produced by the tensor voting. Green indicates curve-ness (λ2 − λ3), blue indicates junction-ness (λ3). (d) Classified curve features
derived from 3(c). Note that no thresholds were used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
capturing the local geometric information and is given by,

Tgabor =
8∑
i=0

((Gi ⊗ I)x,y ∗ Tx,y,i). (7)

Using the tensor decomposition Eq. (6), all pixels for which
(λ2 − λ3) > λ3 are classified as part of curves with tangent
orientation Ee3. Similarly all pixels for which λ3 > (λ2 − λ3) are
classified as junction points with no orientation preference.
For example, if a point pc lies along a curve in the original

image its highest response will be at the Gabor filter with a
similar orientation as the direction of the curve. Encoding the eight
responses of pixel pc as unit plate tensors, scaling them with the
point’s response magnitudes and adding them together results in
a tensor where (λ2 − λ3) > (λ1 − λ2), (λ2 − λ3) > λ3 and the
orientation Ee3 is aligned to the direction of the curve i.e. a plate
tensor. Similarly a tensor representing a point pj which is part of a
junction will have λ3 > (λ2−λ3), λ3 > (λ2−λ3) i.e. a ball tensor.
The encoded points then cast a vote to their neighboring points

which lie inside their voting fields, thus propagating and refining
the information they carry. The strength of each vote decays with
increasing distance and curvature as specified by each point’s stick,
plate and ball voting fields. The three voting fields can be derived
directly from the saliency decay function (Guy and Medioni, 1997)
given by

DF(s, κ, σ ) = e
−

(
s2+cκ2

σ2

)
(8)

where s is the arc length of OP, κ is the curvature, c is a constant
which controls the decay with high curvature (and is a function of
σ ), and σ is a scale factor which defines the neighborhood size as
shown in Fig. 2(b). The blue arrows at point P indicate the two types


























